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Numerical analysis of flexible retaining walls

J.W.PAPPIN, B.SIMPSON, P.J.FELTON & C.RAISON
Ove Arup & Partners, London, UK

ABSTRACT: A numerical method for analysing the behaviour of flexible retaining walls is
presented. The method differs significantly from the traditional subgrade reaction
approach in the ways that the soil stiffness and earth pressure limits are modelled.
Three stiffness matrices are used in the analysis which allows soil-structure
interaction to be modelled. One matrix represents the wall in bending while the other
two represent the soil on each side of the wall. Each soil stiffness matrix is
assembled using two pre-calculated flexibility matrices obtained from finite element
analyses of elastic soil blocks. Earth pressure 1limits are determined from
consideration of forces applied to the soil which allows the known effect of soil
arching to be modelled. This occasionally permits pressures to locally exceed active
and passive limits. The analysis has been incorporated into a computer program which is
sufficiently economic and simple enough to be used as part of the general design
process. Examples of its use are given.

1 INTRODUCTION Satisfactory mathematical modelling of

the behaviour of this soil structure

The term "flexible retaining walls" system generally involves the use of a non
includes sheet pile walls, diaphragm linear finite element analysis method.
(slurry, trench) walls, and secant pile For routine analysis by general designers
walls. They are usually associated with finite elements methods tend to be
excavations and support the ground expensive and complex and therefore
adjacent to the excavation by transmitting susceptible to error. Consequently a

horizontal earth pressures either into
struts and anchors or into the soil at
greater depth. The design of flexible
retaining walls requires an assessment of
the necessary penetration of the wall, the
bending moments and shear forces to be
resisted by the wall and the movements of
the wall and the adjacent soil.
Traditionally, the design of these walls

simpler analysis system is desirable.

This paper describe an alternative
method of analysis that is sufficiently
simple and inexpensive that it can form
part of the general design process. As
with finite element computations the
analysis is carried out in steps
corresponding to the stages of the
construction. The analysis can

has been carried out using stability accommodation the following parameters:
considerations combined with empirical - s0il layering including different
rules to determine movements, bending materials each side of the wall

moments and shear forces. While this is - limits to the problem including a

‘usually adequate to determine the rigid base and vertical boundaries (e.g.
necessary  penetration, the empirical the centre line of a trench).
“methods are often not sufficiently - pore water pressure which can either

accurate and in some cases are not
applicable. The wall movements, bending
moments and shear forces are very
dependent on the stiffnesses of the wall,
struts and the soil. In addition, the
stress changes applied to the soil
frequently give rise to plastic failure
within parts of the soil.

be hydrostatic or directly specified.

- surcharges, either uniformly
distributed loads or strip loads.

- excavation/filling, soil can be added
or removed from either side of the wall

- anchors or struts can be installed or
removed at any stage.

It is recognised that there are many
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computer programs available which
incorporate analysis methods for this type
of problem. The method of analysis
presented here, however, differs
significantly from these in the way the
soil is modelled. The analysis method has
been incorporated into a computer program
for general use in a design office and
various examples are given. Some
shortcomings of the analysis are
discussed.

2 DESCRIPTION OF THE ANALYSIS

Figure 1 shows typical stages of
construction that the analysis can model.
At each stage the incremental
displacements due to the changes caused by
that stage are calculated and added to the

existing displacements. The soil
stresses, strut forces, wall bending
moments and shear forces can then be
determined.

Soil 2 I

Rigid Boundary

Initial conditions Dewatering

Anchor installation Final excavation
Fig 1. Typical stages of construction

Final conaition

2.1 Numerical Representation

The numerical representation is shown on
Figure 2. The wall is modelled as a
series of elastic beam elements joined at
the nodes. Depending on the method used
to characterise the soil stiffness the
lowest node is either the base of the wall
or at a prescribed rigid base in the
ground beneath the wall. The soil to each
side of the wall is connected at the nodes
as shown on the figure. Only horizontal
forces can be transmitted between the soil
and the nodes and these forces are
directly related to the earth pressures.
Struts or anchors are modelled as forces
and spring stiffnesses connected to the
relevant nodes.

The analysis assumes plane strain
conditions throughout except when the
Mindlin method is used to represent soil
stiffness as described in section 2.4.

Prestress (Pg) } strut
(/f&mmﬁ(%)

Nodes
Beam elements

SOILTO LEFT OF WALL
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SOIL TO RIGHT OF WALL
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Base | dt problem for subgrade
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VERTICAL RIGID BOUNDARY

Fig 2. Numerical representation

2.2 Method of Analysis

At each stage of construction the analysis
comprises the following steps.

(a) The initial earth pressures and the
out of balance nodal forces are calculated
assuming no movement of the nodes.

(b) Stiffness matrices representing the
soil on either side of the wall and the
wall itself are assembled.

(c) These matrices are combined together
with any stiffnesses representing the
actions of struts or anchors to form an
overall stiffness matrix.

(d) The incremental nodal displacements
are calculated from the nodal forces
acting on the overall stiffness matrix
assuming linear elastic behaviour.

(e) The earth pressures at each node are
calculated by adding the changes in earth
pressure due to the current stage to the
initial earth pressures. The derivation
of the changes in earth pressure includes
multiplying the incremental nodal
displacements by the soil stiffness
matrices.

(f) The earth pressures are compared
with soil strength 1limitation criteria
conventionally taken as either the active
or passive limits. If any strength
criterion is infringed a set of nodal
correction forces is calculated. These
forces are used to restore earth pressures
which are consistent with the strength
criteria and also model the consequent
plastic deformation within the soil.

(g) A new set of nodal forces is
calculated by adding the nodal correction
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forces to those calculated in step (a).

(h) Steps (d) to (g) are repeated until
convergence is achieved.

(i) Total nodal displacements,  earth
pressures, strut forces and wall shear
stresses and bending moments are
calculated.

Details of the above steps are given in
relation to each of the principal
variables in the following sections.

2.3 Wall Stiffness

The wall is modelled as a series of
elastic beam elements. The stiffness
matrix is derived wusing conventional
methods from slope deflection equations as
follows.

The moments

[M] and horizontal forces

[P] at the nodes are represented as
(Ml = [A][4] + [B]1I[O]
T

and [Pl = [C][§] + [A] (O] (1)
where [A], [B] and [C] are functions of
the element lengths and flexural rigidity
(EI); [8] are the nodal horizontal
displacements and [Q] are the nodal
rotations.

As there are no moments applied to the

wall [B] can be eliminated to give

[Pl = [[C] - [A]T[Bfl[A]] [8] or

[P] = [s](é] (2)
in which [S] is the wall stiffness matrix.

2.4 Soil stiffness

The formulation of a stiffness matrix to
model the soil is not as straightforward
as that used for the wall. The program
provides three alternative methods to the
designer.

(a) Subgrade reaction model
-The soil is represented by individual

linear elastic springs connected to the
wall at the node points as shown in Figure

3. The stiffnesses in terms of force per
unit displacement per unit 1length of
spring and lengths of the springs are

specified to represent the soil at each
node. The length and stiffness values are
closely associated and their selection is
difficult because they are not basic soil
parameters.

A major weakness is that the so0il nodal
displacements are not interconnected. 1If
one node is acted on by a force then only
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that node responds whereas the adjacent
nodes are not moved. This is clearly not
representative of real soil behaviour.
Design rules for the choice of length and
stiffness can only be formulated once the
likely behaviour is known. This is not
very satisfactory and implies that ideally
the soil stiffnesses should be modified

Fig 3. Subgrade reaction model

within the analysis for each stage of the
construction.

Nevertheless, the subgrade reaction
model can be very useful for analysing
specific types of non standard problems.
For example, it 1is considered that
horizontally loaded piles can be
satisfactorily modelled using this model.

(b) Finite Element flexibility model

In this method the soil on each side of
the wall is modelled as a block of elastic
material. The behaviour of each elastic
block is represented by a stiffness matrix
which is obtained by inverting a
flexibility matrix derived as follows.

Finite element analyses have previously
been carried out for the block of material
shown in Figure 4. Flexibility matrices
for load on the vertical surface AB have
been stored for two different elastic
blocks. These flexibility matrices define
the magnitude of the horizontal
displacements at all the nodes on the
vertical free surface due to a unit load
applied at any one node. Plane strain
conditions were assumed. The two
different cases of elastic blocks used
were uniform Young's modulus and Young's
modulus increasing linearly with depth
from zero at the surface.

The flexibility matrices from the two
cases are combined proportionally to cover
any situation in which stiffness increases
linearly with depth, whatever the value at

Soil U=0-3

Length (L } = 10H, 8 unequal elements

7
boundanes

7 7
Rough rigid

Fig 4. Soil block used in finite element analysis



the free surface. No theoretical basis
has been found to confirm that such a
combination would give an accurate result,
but comparison with further finite element
studies suggests that the approximation
is, in fact, very good.

The program manipulates the flexibility
matrix to generate an equivalent
flexibility matrix compatible with the
node spacing used to represent the wall.
This manipulation is achieved by scaling
the finite element mesh to match the
height of the elastic soil block and then
linearly combining the flexibility terms
to produce the desired matrix. Special
attention has been paid to achieving good
approximations for the dominant terms on
the leading diagonal of the matrix.

Linear variation of stiffness with depth
can oversimplify the design profile. &an
approximate method of adjusting the
matrices to accommodate  non-linear
variations of soil stiffness is outlined
below.

To represent E , the variation of
Young's modulus with depth (z), a best fit
linear approximation E* is first
calculated. The flexibili%y matrix [F*]
corresponding to Ez* is derived as
described above. The following ratio is
calculated for each node.

D D
2 * * *
g (95 \az E %, Y a @
z 12 z 1z
i:; 9z dz
2=0 z=0

* .
where §, is the flexibility at depth 2z
resulting from unit load applied at node i

*
calculated using the assumed modulus Ez.
D is the depth to the rigid boundary.
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The flexibility matrix [F],
corresponding to the original variation
Ez, is determined by multiplying each row
in [F*] by the appropriate ratio. Terms
representing the effect of a unit load at

node i are multiplied by the ratio
calculated for node i. Symmetry is
maintained by using the minimum

flexibility produced for each pair of
nodes. Figure 5 shows a comparison of the
"correct" finite element solution and that
produced by this approximation. The
problem illustrated is one of the more
severe cases that could be envisaged:
Other comparisons with matrices developed
by a finite element studies indicate that,
for practical situations, errors will
rarely exceed 20%.

The flexibility matrices were derived
for one specific geometry which
represented a length to height (L/H) ratio
of 10 (see Figure 4). As L/H changes,, the
flexibility matrix will change and hence
the stiffness matrix. To allow for
varying L/H ratios the stiffness matrix
has been further modified by adding a
single spring at each node point. For
high L/H ratios the spring stiffness is
small due to the large spring length and
the stiffness matrix is virtually
unchanged. For small L/H ratios the
single spring stiffness becomes dominant
and controls the calculated wall
movements. Test comparisons were carried
out with finite elements (for an elastic
soil which had a linearly increasing
stiffness with depth) to determine the
error due to this simplified assumption.
The agreement was within 10 % for L/H
ratios in the range 0.3 to 0.6 and for L/H
ratios greater than about 3. The largest
differences occur for L/H ratios of about
1 when the maximum difference between the
two methods is about 30 %.
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Fig. 5.
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(c) Mindlin flexibility method

This method is very similar to the finite
element flexibility method in that the
soil is modelled as blocks of elastic
material. The method uses the integrals
of the Mindlin equations which were
published by Vaziri et. al. (1982). The
integrals calculate the displacement at
any point due to either a vertical or
"horizontal stress applied to either a
vertical or horizontal rectangular area
within an elastic half space. If there is
no rigid base or vertical loading they can
be used directly to determine the
flexibility coefficients of the nodal
points due to horizontal pressures applied
to the nodes. The flexibility of the soil
on each side of the wall is equal to twice
that of a half space. This is due to the
absence of the effect of the soil on one
side of the wall assuming that the wall is
at a plane of symmetry. The effect of the
width, or out of plane dimension of the
retaining wall can also be taken into
account to some extent as the equations
model the length of the pressure loaded
rectangular area in the out of plane

direction. Clearly if this dimension is
large a plane strain condition is
modelled.

The soil being modelled is not an
elastic half space, however, and the
effects of the assumed rigid base and
vertical boundary should ideally be
incorporated. To take these boundaries

into account additional nodes are included
when formulating the flexibility matrix
(see Figure 6). When modelling each side

of the wall the s0il must still be
considered as a half space and the
resulting flexibility matrix doubled.
Therefore to maintain symmetry at the

plane of the wall additional nodes must be
added to both sides. The base nodes are
restrained both vertically (2Z-Z direction)
and horizontally (X-X) whereas the
vertical boundary nodes are only
restrained horizontally (X~X). As these
nodes are on a plane of symmetry (X-X,
Z-Z) they will not move in the Y-Y
direction.

Nodal restraints are achieved by
modelling stresses acting on rectangular
areas centred at each node to force the
displacements of the nodes to be zero.
For a vertical boundary node a horizontal
pressure 1is considered to act on a
vertical rectangle. For a base node two

stresses are considered, one being a
horizontal traction and the other a
vertical pressure, both acting on a

horizontal rectangle. In all cases the
width of the rectangle is taken as being

Soil surface { XY plane)

<
Additional node to ra

fix vertical boundary ™ Additional nodes to
fix rigid base

Fig 6. Halt space representation of soil block

equal to the width (W) specified for the
wall.

The final soil stiffness matrix can be
computed by eliminating the fixed nodes
and inverting the flexibility matrix of
the central nodes only.

This method of modelling fixity is

considered to be reasonable when W is
large relative to the depth or to the
distance to the vertical boundary.
When W is small three dimensional effects
will dominate and to approximate the
fixity of a plane by a single line of
nodes becomes somewhat dubious.
Additional nodes on the fixed planes away
from the plane of symmetry (X-X, 2-Z), or
varying the width (W) of the loaded
rectangle at the fixed nodes would improve
this approximation. Nevertheless using
the Mindlin flexibility method provides
approximate means of studying the
importance of W.

A drawback of the Mindlin flexibility
method is that Young's modulus is assumed
to be constant with depth. This is
significantly different from the finite
element flexibility method which can model
accurately a linearly increasing modulus
with depth. Nevertheless the same ratios
that are applied to model modulus
variations (Equation 3) can still be used
with the Mindlin method. An example
comparing flexibility coefficients is
given in Figure 5 where it can be seen
that the approximation is quite good.

(d) Comparison of methods

The subgrade reaction method is
significantly different from the finite
element and Mindlin flexibility methods.
This is illustrated for a strutted sheet
pile wall in a sand in Figure 7. It can
be seen that the subgrade reaction model
fails to detect the increase in earth
pressure in the vicinity of the strut.
This leads to a considerable
under-estimate of the strut force and a
slight over-estimate of the bending
moments in the wall.
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Fig 7. Comparison of soil models

The finite element and Mindlin
flexibility methods behave similarly. The
Mindlin flexibility method is more
tolerant of very uneven node spacing but
the finite element flexibility method is

generally better when variations of
Young's modulus with depth are to be
modelled. Both methods assume a constant

Poisson's ratio (J)) and the finite element
flexibility method has only been
established with a value of 0.3 The
facility to model restricted width in the
out of plane direction in the Mindlin
method is promising but is not fully
developed as yet and is difficult to check
against any other type of analysis.

2.5 Soil strength limitations

The soil strength limitations are modelled
using active and passive pressure states

\
‘/%’ Pressure
‘ / > active )
|/
/= t
i
il / Y&%L '\:

a) Overall b) Locallised

Fig 8. Mechanism for active failure

which may be represented at any depth z by

<p< 4
P, <P <P, (4)
where:
p = earth pressure
P =K p' -K c + u = active earth
a a v ac
pressure
P = Kp' + K c+u = passive earth

p PV pe pressure .

and 'Ka, KP, K , K = earth pressure

ac pc
coefficients at depth =z

p'v = vertical effective stress :
c = cohesion

u = pore water pressure

In the absence of wall friction and
adhesion, Inequality (4) corresponds to a

Rankine analysis. It can be shown that
Inequality (4) represents a sufficient
condition for stability of the soil, but
not a necessary condition. In many
circumstances, it is possible for the
earth pressure at some points on the wall
to lie outside these limits without the
formation of a mechanism.

The formation of a mechanism can be
studied by analysis of a wedge of soil, as
shown in Figure 8a. Coulomb showed that,
in the absence of wall friction, the force
P between ground surface and depth z was
limited thus:

z z z
fpa dz g P = f pdz fpp dz (5)
o) [} o

The notation here is as in Inequality (4).
Inequality (5) provides necessary
conditions for the prevention of a
mechanism which extends from depth z up to
the ground surface. It is not, however,
sufficient to prevent other localised
mechanisms developing within the soil
body.

In order to provide a good approximation
to conditions which are both necessary and
sufficient to prevent instability, the
mechanism represented by Figure 8b has
been studied. It is considered that this
type of mechanism will not occur provided
that at any depth z,:

i
Z . zZ . z,
!Baz az <.[de <f sz az (6)
i i %3

for all z, < z,
i J

where: p

at depth z (z, < z < z,) is set
1 |
equal to
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/ z
X g. . +f‘de—u+u. - K _c+u (7)
al “vi min i ac
%y
and O, ., is the minimum vertical
effective g%?ess which could occur at
depth z,.

u,is the pore pressure at depth z,.
Similarly ppz at depth z is set equal to

/ z,
xp (O . +f-yldz-u+u. + K c+u (8)
vi max z i pc
/
where: O;i max is the maximum vertical
effective “stress which could occur at
depth z5.

The minimum and maximum vertical
effective stresses are not necessarily
equal to the vertical effective stress
induced by the overburden and surcharges.
If arching occurs the vertical stress on
the soil adjacent to the wall may vary
greatly. If wall friction is ignored,
however, the minimum and maximum vertical
stresses at depth z, are taken as being

equal to
/ [}
g. . =p, K, - K . ¢, and
vi min i ai aci i 9
/ !
. =p, K. + K . c.
([v1 max ~ Fi pi pci i
where p! is the horizontal effective
stress actlng at depth z, and K 5!

and ¢, are thé earth pressgre
coe%flcf%nts and %he cohesion at depth z,
These equations provide an approximate
method of representing local failure of
the soil. Use of conditions (6) to (9)
provides a conservative limitation on the
amount of arching which can occur.

The designer may choose whether to use
Inequality (4) or Inequality (6). It is
believed that Inequality (6) is more
reasonable and better reflects the actual
situation as it permits a limited degree
of arching to occur within the soil body.
The effect of this choice is clearly
illustrated in Figure 7 where the results
using Inequality (4) are referred to as
'no arching' and the results wusing
Inequality (6) are referred to as 'arching
permitted'. As the earth pressures near
the strut are well above active pressure
(p > pa) the analysis using Inequality (6)
has permitted the pressures at greater
depth to reduce below the Rankine active
pressure. This has markedly reduced the
bending moments in the wall and the strut
force.

To ensure that the active and passive
pressure limits evaluated above are not
violated, the program computes nodal

correction forces to restore acceptable
pressure levels. To obtain convergence
reliably it has been found necessary to
achieve this by way of a set of
"displacement corrections” from which the
force corrections are calculated using the
soil flexibility matrix. The
"displacement corrections" are computed
for each node and are associated with the
plastic strain developed in the hody of
soil.

When "displacement corrections™ are used
the earth pressure at any node is still
influenced through the soil flexibility by
the movement of the nodes below. However
the earth pressure may be independent of
the movement of the node itself and nodes
above. For example, consider an active or
passive failure as shown in Figure 9. The
"displacement correction" applied to
ensure that the limits are not violated at
node q will cause a change of pressure but
no displacement at node r, whilst at node
p there will be a change of displacement
but no chanae of pressure. This means
that movement is taking place at constant
stress on the failure surface whilst
elastic conditions are still maintained
separately in the blocks of material on
either side of the failure surface.

To satisfy the above conditions the
"displacement corrections" are calculated
using the following procedure which works
downwards through each node starting at
the free surface.

(a) at the node (labelled here as i for
convenience) calculate the approximate
displacement correction that would cause
the pressure at the node to change by the

required amount to comply with the
strength criteria.
(b) For each node j above node i

calculate the displacement correction that
is required to prevent a change of
pressure at node j when the displacement
at node i is corrected by the approximate
displacement correction.

(c) Having completed (a) and (b) for all
the nodes sum the displacement corrections

to determine the total “displacement
correction” for each node.
Strip load
Line B Ay
of
Soil surface wall —_—
- T a A
N K LLUJV___:I

~

~N
Failure surface P ~

Q

Uniformly Distributed Load
freccacarconoronaroononooo:

7

Fig 9. Failure surface in soil. Fig 10. Surcharge geometry
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2.6 Excavation or Filling

The effect of excavation or filling is
modelled by specifying the stress ratio of
change in horizontal effective stress over
change in vertical effective stress. This
ratio is denoted by K and K_ which are
used by the analysis as follows:

(a) K_ for determining the horizontal
effective stress in either the
initialisation stage or in filled
material, and

(b) XK_  for determing the change in
horizontal effective stress due to a
change in the vertical effective stress
which arises as a result of either
excavation or filling. Generally, K
should be set to, V/1-¥ but in thg
situation where (v is being increased to
above the preconsolidation pressure a
value of K_ of about 1l-sin @ may be more
appropriate (@ angle of internal
shearing resistance).

2,7 Struts or Anchors

Struts or anchors can be installed at any
node at any stage during the analysis. As
shown in Figure 2 the struts are specified

as having a prestress force P_ and a
stiffness S in terms of force/unit
displacement.” To model the effect of a

moment being applied to the wall by a
strut or an anchor a lever arm L_ can also
be specified such that the momen® is equal
to L_ times the force in the strut. This
featiire is mainly used to model the effect
of an inclined strut or anchor applying

the force eccentrically to the wall
section.
The struts are incorporated into the

analyses by modifying the wall stiffness
(see section 2.3) as follows:

Set
[Fs] = [SS][S] + [p ] and
) = e = (B (s 1181 + e )1
s (10)
where [F ] and [M_] are the nodal strut

forces and moments and [S_ ], [P ] and [L_]
are the nodal strut stiffhesses, prestress
forces and lever arms.

Therefore from section 2.3 it follows that

[P}

a7l + (€108 + [F]
(an

[M]

[L_1[F_] (2} 18] + [B] (O]
s s

By substitution [O@] can be eliminated to
give a new stiffness matrix for the wall
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and struts [Sll equal to

T =1
() + s} + (41708 {[ss] [le-[m} (12)

In subsequent stages of construction the

applied node forces due the struts or
anchors are calculated as

T -1
{[Psl + (8] [Al} {m + (217 (8] [le} (13)

where [A] are the nodal displacements that
have occurred since each strut was
installed. This process is equivalent to
calculating a set of nodal forces that
produce the same effect on the wall as the
applied moment at a single node.

2.8 Surcharges

The modelling of surcharges is often
required to include the effect of nearby
foundations, rafts, etc. In the analysis
two types of surcharges can be specified
to act on either side of the wall at any

stage during construction. They are
illustrated in Figure 10 and are a
uniformly distributed load (UDL) and a

strip load of finite width B acting a
distance A from the wall with a pressure
q.

Both types of surcharge can be applied
at or below the ground surface but the
analysis assumes that a surcharge has no
effect above its level of application.

The procedure required to incorporate

the effects of the surcharges can be
divided into two steps:
(a) compute the <changes in earth

pressures which would occur if the nodes
do not move (i.e. an unyielding wall),

(b) compute the changes in the active
and passive limits for the earth
pressures.

Both of these steps are problematic, and
they will be discussed in turn.

(a) Stress Changes for unyielding wall

For the case of a UDL the horizontal

stress change below the surcharge is
simply evaluated as qu. For a strip load
the change in stress is difficult to

determine because the horizontal stress ig
extremely sensitive to the variation with
depth of the soil stiffness. Two extremes
may be considered.

(1) The stiffness is relatively constant
for a depth several times greater than the
width of the footing. In this case, the
Boussinesq equations may be used to derive
horizontal stresses in the ground. The



pressures on a rigid (ideally
frictionless) vertical boundary would be
double the Boussinesq values, and this

fact can be used to estimate the pressures
on the wall before further movement takes
place.

(2) The stiffness increases sharply at a
depth less than the width of the footing.
In this case the load will appear to the
soil to act rather like a UDL.

The analysis calculates the change of
pressure on the wall before further
‘movement using the equation
= 14
P 2Ks A ohB (14)

where A(,;1 = change of horizontal stress
according %o the Boussinesq equations

K =
S
user.

a correction factor specified by the

For case (1) above, K_ should be 1.0. For
other cases K_ can have a large range of
values, the esaluation of which is beyond
the scope of the analysis. If the strip
load is wide compared with its distance
from the wall and the depth of the

Initial surcharges, which are present

before construction of the wall, are
modelled in the same way as other
surcharges. However, in selecting K the
effects of construction of the wa on
existing horizontal stresses must be
considered.

(b) Active/passive pressure limits

The effect of a UDL on the active/passive
pressures are simply calculated as gK_ and

9K respectively. For a strip load the
effect is difficult to determine and
depends on many factors.

In order to formulate a relatively
simple approximation to the "correct"
solution for the active pressure case

parametric studies have been carried out
using straight line and log spiral shaped
failure surfaces. Only soil that has
constant properties with depth has been
considered. The ranges of variables
considered were as follows; ¢ from 15 to
60°, g/vB from 0.33 to 5 and A/B from 0 to
2. The results showed that the straight
line and log spiral methods usually gave
very similar results. It is considered
important that whatever system is chosen

d?formlyg soil, a Val“% of k_=V/a1 _},) should be generally conservative. 1In the
will give results equivalent to loading
with a UDL with K =Y/ -pP).
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Fig 11. Effect of surcharge on active pressures

log spiral solutions
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case of active pressure this should be
achieved by maximising the pressure near
the top of the soil.

From purely theoretical considerations
the approximation illustrated in Figure 11
was developed to represent the active
pressure distribution. Figure 11(a) shows
the shape of the pressure diagram and the
criteria for calculating it; if the width
of the load (B) is small the diagram will
become triangular. The pressure shown in
Figure 11(a) develops the force shown
against depth in Figure 11(b). A
comparison between the theoretical
pressure distribution and several curves
taken from the parametric study is
presented in Figure 11(c). It -is seen
that the theoretical solution agrees well
with the "correct" solutions and is
generally conservative.

If K_ varies with depth it is considered
conservative to choose a mean value of K
between any depth z and the ground surfac®
and then impose the criteria that the
active force due to the surcharge down to
depth z be equal to the force derived from
the diagram in Figure 11(b). This is
subject to the further limitation that the
pressure never exceeds gKa at any depth.

The effects of a strip load on the
passive pressure are not as easily
represented by a simple pressure diagram.
It is generally conservative to force the
increased resistance as low as possible,
but in some instances, for example when a
floor slab is preventing toe failure of a
wall, it is not. 1In the light of this the
effect on the passive pressure limits due
toc a strip load must be specified
directly.

3 THE PROGRAM - INPUT, OUTPUT

The analysis described in the previous
section has been incorporated into a
computer program. This program is used by
many designers and consequently the input
and output facilities of the program are
important. ’

The input to the program is completely
interactive. The data is inserted in
steps that represent stages of
construction and for each action command
the program prompts for every variable.
Where possible the value is checked to
ensure that it is reasonable or indeed
possible. At the end of each stage of
construction the program produces a
complete set of results comprising earth
pressures, displacements, and the wall
shear forces and bending moments. These
can be presented gféphically as shown -in
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Fig 12. Example of program output

Figure 12 which shows the same problem
presented in Figure 7. Figure 12 displays
results for the finite element flexibility
method with allowance for arching.

4 EXAMPLES

To demonstrate how the analysis can be
applied three examples are included in the
following sub-sections. The first is a
classical problem performed to check the
suitability of the analysis. The second

is a case where predictions were made
during the design and subsequently
displacements were measured during
construction. Finally, the third case is

an unusual problem included to illustrate
the versatility of the analysis.

4.1 Rotation of a rigid wall

In 1934 Terraghi reported the results of a
now classical series of tests on the
lateral pressures of dry sand against a
retaining wall. A rigid wall was rotated
abouts its base and the changes of earth
pressure on the wall were recorded. The
results of the tests together with some
additional tests performed at Princeton
are presented in NAVFAC DM7 (1971) and are
redrawn on Figure 13(b). This problem was"
modelled by the analysis wusing the
geometry and soil properties shown in
Figure 13(a). The results are presented
in terms of the ratio K in Figure 13(b)”
where K is derived from the horizontal
force (P). This force is calculated
assuming 1hat it acts at a third of the
wall height above the base and gives a
moment equal to the moment due to the
calculated earth pressures.

~The results of the analysis give very
similar results to those reported. In
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the use of a simple linear elastic/plastic
model. This occurs because plastic yield
is at first local to the top of the wall
and generally spreads downwards.

4.2 A multiply strutted excavation in soft
clay

This problem is illustrated in Figure
l4(a). At the site about 4m of fill
overlies 26m of soft or firm clay over
stiff to hard clay. Undrained shear
strengths measured by a shear vane for the
soft clay are given on the figure.
Predictions were made for the excavation
assuming a c¢ /p ratio of 0.25 to
represent the gtrength properties of the
clay. To represent the stiffness of the
clay an E/c_ ratio of 750, when modelling
the early stages of the construction
reducing to 75 in the final stage was
used. The other parameters used in the
analysis are given in Figure 14(a).

The wall displacements predicted for
each stage of construction are given in
Figure 14(b). The earth pressures for the
final stage of analysis are shown in
Figqure 14(c). These show that arching is
predicted below the excavation 1level on
both sides of the wall with the pressure
‘reducing below p_ to the left of the wall
and increasing above p_ to the right.

Since the predictigns were made the
excavation has progressed from stage 0 to

stage 4 as shown in Figure 14(a).
Inclinometers installed along the line of
the wall were used to measure
displacements which have been published by
Davies and Walsh (1983). These are shown
for each stage in Figure 14(b). It can be

construction stages 2 and 3 but for the
final stage they do not appear to agree
well. This is mainly due to the base of
the wall moving much less than predicted.
In the design prediction the layer of firm
to stiff clay was modelled as being soft
clay since there was some doubt about the
continuity of this layer. Therefore it
was considered sensibly conservative to
ignore it. Another prediction was made
with the undrained shear strength of the
clay increasing to 100kN/m2 below a depth
of 18m. The final displacements for this
case are also shown in Figure 14(b) and
agree well with those measured.
Underprediction of displacements near the
top of the wall are considered to results
from the use of stiffer struts than those
used in construction.

For the purposes of design, however,
this analysis is quite acceptable. The
magnitudes of the displacements, and wall
bending moments are well predicted. It is
these parameters that influence the choice
of wall type, excavation procedure and
strutting arrangement.

4.3 short wall restrained by a slab

A further example is illustrated in Figure
15. Figure 15(a) shows the stages of
construction which consist of a general
excavation of 9.5m followed by the
installation of a contiguous bored pile
retaining wall. Subsequently a raft is
cast to one side of, and directly
connected to, the top of the wall.
Finally, a further excavation of 7m to the
right hand side of the wall allows the
installation of a lower level raft.
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Validation by comparison with actual
results is a difficult process. The
parameters used in the analysis clearly
control the predicted behaviour. For a
"back" analysis of a problem with a known
result it is usually possible to match the

measured response by manipulating the
parameters. This does not directly test
the analysis itself. However "back

analysis" does allow an assessment to be
made of the sensitivity of the analysis to
the parameters.

An improvement on a "back" analysis is a
design prediction which is subsequently
verified by measurement. Section 4.2
presented an example of this where it is
seen that the design prediction for the

actual problem was rather poor. However,
the consequences of this error in
prediction were not significant. The

designer was not trying to achieve exact
predictions but rather to explore what may
happen. The differences between
predictions and measurements in this
instance are, therefore, quite acceptable.

Several attempts have also been made to
test the program against "correct"
solutions. An example has been given in
Section 4.1 for a rigid wall rotating
about its base. Here the analysis was
able to accurately model the measured

behaviour. Comparisons have also been
made between predictions from  this
analysis and those wusing the €finite

element technique. No examples are given
here but generally reasonable agreement -is
'found between the two methods.

Thorough validation of a method of
analysis of this type is difficult to
achieve. :

6. EFFECTS BEYOND THE SCOPE OF THE
ANALYSIS

The analysis cannot directly model the
effects of parameters that change with
time. A common example is a retaining
wall in stiff clay where in the short term
the soil will behave in an wundrained
" manner but in the 1long term drained
behaviour of the soil is relevant. The
wall and permanent strutting system are
usually installed quickly with the
"behaviour of the clay being essentially
undrained. The question remains as to how
much the strut loads will increase as the
soil reaches the long term condition. The
increases in strut loads are a function of
the changes in pressure acting on the wall
resulting from dissipation of excess pore
pressures developed within the soil due to
excavation. The analysis cannot calculate
these changes and the designer must
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specify them to enable the analysis to
model their effect. Creep, another
example of a time dependent behaviour, can
be significant in both concrete and soil.
The analysis cannot directly model the
effects of this phenomenon.

Non 1linear behaviour is also not
directly modelled by the analysis. A
linear elastic/plastic model is used for
the soil but in reality soil is always non
linear. If this effect is significant,
suitable finite element methods should be
used.

The wall itself may also behave in a non
linear manner. If required, however, a
simple linear elastic/plastic model could

be included in the analysis presented
here.
7 SUMMARY

1. A numerical method of analysis for
flexible retaining walls that is

sufficiently simple and cheap to be used
in the general design process has been
presented.

2. The wunusual but very powerful
features of the analysis are the ways in
which soil stiffness and earth pressure
limits are modelled.

3. The soil stiffness is generated from
considering a block of elastic material
rather than the commonly used series of
independent springs.

4. The earth pressure limits are
determined from consideration of forces
resisted by or applied to the soil rather
than simple comparisons with active and
passive pressure limits.

5. The importance of good input and
output facilities is emphasised.

6. Examples have been given to
demonstrate the use and range of the
analysis.

7. Thorough validation of the analysis

is difficult.’
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